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Synchronization is optimal in nondiagonalizable networks
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We consider maximization of the synchronizability of oscillator networks by assigning weights and direc-
tions to the links of a given interaction topology. By extending the master stability formalism to all possible
network structures, we show that, unless some oscillator is linked to all the others, maximally synchronizable
networks are necessarily nondiagonalizable and can always be obtained by imposing unidirectional information
flow with normalized input strengths. The results provide insights into hierarchical structures observed in
complex networks in which synchronization is important.
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Under extensive study in recent years is how the collec-
tive dynamics of a complex network is influenced by the
structural properties of the network [1], such as clustering
coefficient [2], average network distance [3], connectivity
distribution [4], assortativity [5], and weight distribution
[6,7]. The effects of these properties on synchronization has
particularly attracted the attention of researchers, partly be-
cause of the elegant analysis due to Pecora and Carroll [8],
which allows us to isolate the contribution of the network
structure in terms of the eigenvalues of the coupling matrix.

Synchronizability of complex networks of oscillators gen-
erally has been shown to improve as the average network
distance decreases, with one notable exception: in random
scale-free networks, which are characterized by a strong het-
erogeneity of the connectivity distribution [4], synchroniza-
tion was shown to become more difficult as the heterogeneity
increases [9], even though the average network distance de-
creases at the same time. Motivated by this counterintuitive
effect, researchers have pursued ways to enhance the syn-
chronizability of scale-free networks by introducing direc-
tionality and weight to each link in the network [6,10]. A
natural question arising in this context is as follows: Given a
network of oscillators with a fixed topology of interactions,
which assignment of weights and directions maximizes its
synchronizability? By maximization, we mean that the syn-
chronized states are stable for the widest possible range of
the parameter representing the overall coupling strength.

The study of such a question provides us with insights
into the dynamics of real-world complex networks and may
guide us in designing large artificial networks. Metabolic
networks are prototypic examples where the weights and di-
rections of feasible links (metabolic fluxes) are adjusted to
optimize fitness, which is likely to account for the robustness
of synchronized behavior against environmental changes
[11]. Other examples range from the enhancement of neu-
ronal synchronization for a given topology of synaptic con-
nections in the brain, to the design of interaction schemes
that optimize the performance of computational tasks based
on the synchronization of processes in computer networks
[12].

Here we show that the answer to the question of maxi-
mum synchronizability falls outside the framework of the
Pecora-Carroll analysis, which is built on the assumption that
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the network dynamics can be linearly decomposed into
eigenmodes, i.e., the coupling matrix of the network is diag-
onalizable. Indeed, we show that maximally synchronizable
networks are always nondiagonalizable (except for the ex-
treme configurations where a node is connected to all the
others) and can be constructed for any given interaction to-
pology by imposing that the network: (i) embeds an oriented
spanning tree, (ii) has no directed loops, and (iii) has nor-
malized input strength in each node. The fact that networks
are not necessarily diagonalizable has been largely over-
looked in the literature, apparently because most previous
works have focused on networks of symmetrically coupled
oscillators, which are guaranteed to be diagonalizable. How-
ever, the same does not hold true in general when the net-
work is directed, as required in the realistic modeling of
many complex systems. Here we develop a new theory that
extends the Pecora-Carroll analysis to the case of nondiago-
nalizable networks. We show that in this case the synchroni-
zability is still determined by the eigenvalues of the coupling
matrix, but the speed at which the system converges toward
the synchronized state may be significantly slower. This
theory is an example of going beyond the traditional frame-
work for studying complex systems based on either decom-
position into eigenmodes or some sort of superposition prin-
ciple.

Consider n identical oscillators whose individual dynam-
ics without coupling is governed by x=F(x), x € R”. Now
consider the network of these oscillators coupled via an out-
put signal function H: R™ — R"™ along a network with a sym-
metric adjacency matrix A=(A;;) defined by A;;=1 if oscilla-
tors i and j (#i) are connected and A;;=0 otherwise. Let
W;;=0 denote the strength of the coupling that oscillator i
receives from j. Thus, A represents the topology of interac-
tions and W=(W,;) represents the assignment of weights and
directions. The system of equations governing the dynamics
of the oscillator network can then be written as x;,=F(x;)
+027_ AW [H(x))-H(x;)] or, equivalently,

n

X =F(x)- o> LH(x), i=1,....n, (1)
j=1

where o is the parameter controlling the overall coupling
strength and L=(L;;) is the coupling matrix of the directed
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weighted network, defined by L;;=-A;;W;; if i#j and L;=
—2;4:L;;. Note that L is not necessarily symmetric because
the network is not constrained to be undirected.

The maximization problem considered in this paper can
be formulated as follows. For a given topology of interac-
tions between oscillators (represented by A), we want to find
the assignment of weights and directions (represented by W)
that maximizes the synchronizability of the network. In order
to address this question, we need a condition for the network
to synchronize. For any solution x=s(z) of the individual
dynamics x=F(x), the completely synchronous state X;
=s(r) i=1,...,n is automatically a solution of the entire sys-
tem (1). The question then is to determine when this solution
is stable against small perturbations. This synchronization
condition can be derived by extending the linear stability
analysis of Pecora and Carroll [8] to the case where L is not
necessarily diagonalizable, as follows.

The starting point of our analysis is the observation that,
for any n X n matrix L, there exists an invertible matrix P of
generalized eigenvectors of L which transforms L into Jordan
canonical form as P~'LP=J, where

J= . . Bi=l L . (@)

B, TN

and \ is one of the (possibly complex) eigenvalues of L. The
stability of the synchronous solution of Eq. (1) is determined
by the variational equation £=DF(s)é—oDH(s)éL”, where
&=(§,....&,) and & is the perturbation to the ith oscillator.
By applying the change of variable 7=&P~T, we get

7=DF(s)n— oDH(s)pJ". (3)

Each block of the Jordan canonical form corresponds to a
subset of equations in Eq. (3). For example, if block B; is
k X k, then it takes the form

i, = [DF(s) — aDH(s)]n,, (4)
i, =[DF(s) — aDH(s) |5, — oDH(s) n;, (5)
i) = [DF(s) — aDH(s)] 5, — oDH(s) 13, , (6)

where a=o\ and %y, 7, ..., 7, are perturbation modes in
the generalized eigenspace of eigenvalue \.

For « regarded as a complex parameter, Eq. (4) is a mas-
ter stability equation and its largest Lyapunov exponent
A(a), called master stability function [8], determines the sta-
bility of Eq. (4): it is linearly stable iff A(oA)<<0. The con-
dition for Eq. (5) to be stable is apparently more involved but
can be formulated as follows. The linear stability of Eq. (4)
implies that 7, — 0 exponentially as #— . Assuming that the
norm of DH(s) is bounded, we have that the second term in
Eq. (5) is exponentially small. Then, the same condition
A(oN\) <0, now applied to Eq. (5), guarantees the stabilizing
effect of both the first and second terms, resulting in the
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exponential convergence 7, —0 as r— . The same argu-
ment applied repeatedly shows that 2;, ..., 7, must also con-
verge to zero if A(oN)<0. This shows that A(oX\) <0 is a
necessary and sufficient condition for the linear stability of
the equations corresponding to each full block B;. This con-
dition is valid not only in diagonalizable [8] but also in non-
diagonalizable networks.

However, it is worthwhile noting a crucial difference be-
tween the diagonalizable and nondiagonalizable cases. If L is
diagonalizable, then all Jordan blocks are 1X1, so there
would be no equations like Egs. (5) or (6), and each mode of
perturbation is decoupled from the others. Thus, the expo-
nential convergence occurs independently and simulta-
neously. On the other hand, if L is not diagonalizable, some
modes of perturbation may suffer from a long transient. For
instance, if we have a network of linearly coupled phase

oscillators, 9i=w—0'2jLij0j, 6. S', then we can explicitly
solve Egs. (4)—(6) for the solution s(f)=wt to obtain the last
perturbation mode 17k=e‘“’2f;()lc,<ti, where the constants c;
depend on the initial condition. Therefore, the larger the size
k of the Jordan block, the longer the transient.

Turning our attention back to the maximization problem,
we first note that the eigenvalues \q,...,\, of matrix L can
be ordered such that 0=A; <Re A\, =< <Re \,, where one
eigenvalue is always zero because L has zero row sum and
all the others are guaranteed to have non-negative real parts
because of the Gerschgorin Circle Theorem. Thus, taking all
the Jordan blocks into account, it follows from our stability
analysis that the synchronous solution is stable if and only if

A(oN) <O fori=2,...,n.

Here A(oN;)=A(0)=0 is the largest Lyapunov exponent of
the individual oscillators and corresponds to the stability
along the synchronization manifold. We next note that
ReN,>0 if and only if the network embeds an oriented
spanning tree, i.e., there is a node from which all other nodes
can be reached by following directed links. This condition
follows from Ref. [13] and generalizes the notion of connect-
edness to directed networks. We assume this condition here
to ensure that the network is compatible with synchroniza-
tion.

In most of the previously studied cases, the master stabil-
ity function A(«), determined by F, H, and s, has been found
to be negative in a single convex bounded region of the
complex plane [14]. This implies the existence of a single
interval (0., Oma) Of the overall coupling strength o for
which synchronization is stable. Thus, the synchronizability
of the network can be measured in terms of the relative in-
terval o/ Opmin: the network becomes more synchronizable
as Opax/ Omin becomes larger. In the special case of undi-
rected networks, the eigenvalues of L are real, and this mea-
sure of synchronizability is proportional to the ratio A,/\,
[15].

A critical observation is that in order for the ratio
Omax/ Omin 10 achieve absolute maximum for any given A(a)
with a convex stability region, all nonzero eigenvalues must
be real and equal to each other. The condition that the eigen-
values must be real follows from the convexity of the stabil-
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FIG. 1. (Color online) (a) Example of optimal assignment of weights and directions within a given interaction topology. The total input
strength in each node is normalized to \, where thick, medium, and thin arrows indicate weight N, 2\/3, and \/3, respectively, and dashed
lines have zero weight. Nodes are numbered and colored to show the hierarchical structure, in which connections are only from a higher level
to a lower level, with no feedback loops. (b) Example of oriented spanning tree within the same interaction topology as in (a), constructed

by the breadth-first search.

ity region and the fact that complex eigenvalues appear in
conjugate pairs, while the condition that they must be equal
follows from the fact that, for real eigenvalues, the ratio
Omax/ Omin 1S proportional to N,/\,. Thus, a network with

0=A <N\y= - =)\, @)

has the widest possible range of coupling strength in which
synchronization is stable, independently of the individual
node dynamics F, output function H, and synchronous state
s, as long as the stability region is convex [16].

Under the mild assumption that the interaction topology
allows no oscillator to interact with all the others, any maxi-
mally synchronizable network is necessarily nondiagonaliz-
able. This comes from the fact that if L is diagonalizable and
satisfies the optimality condition (7) with nonzero eigenval-
ues equal to A>0, then all the rows of the characteristic
matrix L—NI must be equal. In terms of the network struc-
ture, this means that each node must either have uniform
output to all the other nodes (at least one of them must do so)
or have no output at all. These exceptional cases include
globally connected networks and directed star configurations.
However, it is uncommon in a large complex network that an
oscillator can communicate with all the other oscillators.
Therefore, our extension of the master stability analysis to
nondiagonalizable networks was indeed necessary to prop-
erly address the optimization problem.

Having observed that optimal networks are rarely diago-
nalizable, we now show that, for any connected topology of
interactions, there are assignments of directions and weights
for which the resulting network is nondiagonalizable and
maximally synchronizable. We first note that maximum syn-
chronizability can always be achieved by imposing that the
network (i) embeds an oriented spanning tree, (i) has no
directed loops, and (iii) has normalized input strengths in
each node, i.e., the total input is the same for all nodes that
have input. Condition (i) guarantees that Re A, >0, condition
(ii) guarantees that the eigenvalues are real, and condition
(iii) then implies the identity (7) among the nonzero eigen-
values. In such optimal networks, we can always rank the
nodes so that each node has inputs only from nodes that are

higher in the ranking [see Fig. 1(a) for an example]. In this
hierarchical structure, information flows only from top to
bottom in the ranking, without feedback. The optimality can
be formally confirmed by noting that indexing nodes accord-
ing to the ranking makes L a lower triangular matrix with
0,\,...,\ on the diagonal, which means that \,=---=N\,
=\, where A >0 is the total input strength in n—1 of the
nodes. An important class of such maximally synchronizable
networks consists of the oriented spanning trees themselves,
where condition (iii) leads to uniform weights for all links of
the tree [see Fig. 1(b) for an example]. This example shows
that any interaction topology admits at least n—1, but usually
many more, optimal nondiagonalizable networks. Indeed,
from the Matrix-Tree Theorem it follows that the number of
all oriented spanning trees is II'_,u;, where u,,...,u, are
the nonzero Laplacian eigenvalues of the underlying undi-
rected network defined by matrix A. For a globally connected
network, for example, the number is n"~!, which is huge
even for relatively small networks. All these oriented span-
ning trees are nondiagonalizable, except for the star configu-
ration. Oriented spanning trees can be explicitly constructed
by the well-known procedure called the breadth-first search,
which spans all nodes starting from an arbitrary root node.

Physically, the optimality conditions (i)—(iii) can be un-
derstood as follows. The top node in the ranking has no input
and acts as a master oscillator that dominates the network
dynamics. If the coupling strength o is chosen so that
A(oN\) <0, then the oscillators that are immediately lower in
the hierarchy and have input from the master will synchro-
nize themselves with the master. Any oscillator having input
only from these oscillators and the master must also synchro-
nize, since normalization of the total input strength makes
the equation effectively look as if it were having input from
a single oscillator that is synchronized with the master. Re-
peating the same argument for the rest of the network, we see
that under conditions (i)—(iii) all oscillators must eventually
synchronize and they do so for the entire range of o where
A(oN) <O0.

Interestingly, undirected tree networks have been found to
be among the most difficult to synchronize [17], in striking
contrast to our result that directed spanning trees lead to the
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most synchronizable configurations. This highlights the sig-
nificance of directionality of the interactions in determining
the synchronizability of networks [18]. On the other hand,
the choice of the master oscillator in a maximally synchro-
nizable network is completely arbitrary, despite the intuition
that the nodes with largest connectivity would be the most
natural choice. Moreover, the directions of the links in such a
network are not necessarily related to the properties of the
nodes they connect, even though there has been a suggestion
that it would be related to the age of the nodes [19]. In
contrast, under the stricter constraint that all feasible input
connections have the same strength in each node, it was
found [6] that maximum synchronizability is achieved when
the individual input strength is inversely proportional to the
connectivity of the node, which is consistent with our result
that normalization is key to ensuring optimality.

The optimality conditions (i)—(iii) suggest that in design-
ing a network for which synchronization is desired, it is gen-
erally advantageous to avoid feedback loops and to normal-
ize input strength. Because these conditions typically lead to
assigning nonzero weights only to a subset of all possible
links, this interesting result can be interpreted as a synchro-
nization version of the paradox of Braess for traffic flow
[20], in which removing links leads counterintuitively to im-
proved performance of the network. Furthermore, such as-
signment of weights not only maximize the synchronizabil-
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ity, but also minimize the coupling cost. The coupling cost
can be defined as the sum of the input strengths of all nodes
at the synchronization threshold [6]. If A(a) <0 in (a;, @),
then the coupling cost for any network can only be as small
as a;(n—1), which can be achieved by networks with global
uniform coupling. A surprising fact, however, is that this
minimum can also be achieved by the maximally synchroni-
zable networks as well. In other words, our optimality con-
ditions allow a network constrained by an arbitrary topology
to synchronize with the best possible efficiency. Interest-
ingly, loopless networks are also obtained in the optimization
of transportation networks [21].

Our characterization of the maximally synchronizable net-
works can be used to test the widely assumed hypothesis that
synchronizability plays an important role in the evolution of
many real-world complex networks. The loop structure of
the metabolic network of E. coli suggests that having fewer
loops may have been beneficial for the cell (the details will
be published elsewhere), while recent experimental findings
[22] suggest the significance of hierarchical structures in
neuronal networks. Exploring more real data to systemati-
cally test this hypothesis is fundamental for a better under-
standing of complex networks.
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